Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2021): 20240524, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628123

RESUMO

Philopatric kin-based societies encourage a narrow breadth of conservative behaviours owing to individuals primarily learning from close kin, promoting behavioural homogeneity. However, weaker social ties beyond kin, and across a behaviourally diverse social landscape, could be sufficient to induce variation and a greater ecological niche breadth. We investigated a network of 457 photo-identified killer whales from Norway (548 encounters in 2008-2021) with diet data available (46 mixed-diet individuals feeding on both fish and mammals, and 411 exclusive fish-eaters) to quantify patterns of association within and between diet groups, and to identify underlying correlates. We genotyped a subset of 106 whales to assess patterns of genetic differentiation. Our results suggested kinship as main driver of social bonds within and among cohesive social units, while diet was most likely a consequence reflective of cultural diffusion, rather than a driver. Flexible associations within and between ecologically diverse social units led to a highly connected network, reducing social and genetic differentiation between diet groups. Our study points to a role of social connectivity, in combination with individual behavioural variation, in influencing population ecology in killer whales.


Assuntos
Orca , Animais , Orca/genética , Comportamento Social , Ecossistema , Comportamento Predatório , Dieta
2.
Mar Pollut Bull ; 199: 115936, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154171

RESUMO

Phthalates are used in plastics, found throughout the marine environment and have the potential to cause adverse health effects. In the present study, we quantified blubber concentrations of 11 phthalates in 16 samples from stranded and/or free-living marine mammals from the Norwegian coast: the killer whale (Orcinus orca), sperm whale (Physeter macrocephalus), long-finned pilot whale (Globicephala melas), white-beaked dolphin (Lagenorhynchus albirostris), harbour porpoise (Phocoena phocoena), and harbour seal (Phoca vitulina). Five compounds were detected across all samples: benzyl butyl phthalate (BBP; in 50 % of samples), bis(2-ethylhexyl) phthalate (DEHP; 33 %), diisononyl phthalate (DiNP; 33 %), diisobutyl phthalate (DiBP; 19 %), and dioctyl phthalate (DOP; 13 %). Overall, the most contaminated individual was the white-beaked dolphin, whilst the lowest concentrations were measured in the killer whale, sperm whale and long-finned pilot whale. We found no phthalates in the neonate killer whale. The present study is important for future monitoring and management of these toxic compounds.


Assuntos
Caniformia , Phoca , Phocoena , Ácidos Ftálicos , Orca , Baleias Piloto , Animais , Cachalote
3.
J Anim Ecol ; 92(6): 1216-1229, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37055915

RESUMO

Quantifying the diet composition of apex marine predators such as killer whales (Orcinus orca) is critical to assessing their food web impacts. Yet, with few exceptions, the feeding ecology of these apex predators remains poorly understood. Here, we use our newly validated quantitative fatty acid signature analysis (QFASA) approach on nearly 200 killer whales and over 900 potential prey to model their diets across the 5000 km span of the North Atlantic. Diet estimates show that killer whales mainly consume other whales in the western North Atlantic (Canadian Arctic, Eastern Canada), seals in the mid-North Atlantic (Greenland), and fish in the eastern North Atlantic (Iceland, Faroe Islands, Norway). Nonetheless, diet estimates also varied widely among individuals within most regions. This level of inter-individual feeding variation should be considered for future ecological studies focusing on killer whales in the North Atlantic and other oceans. These estimates reveal remarkable population- and individual-level variation in the trophic ecology of these killer whales, which can help to assess how their predation impacts community and ecosystem dynamics in changing North Atlantic marine ecosystems. This new approach provides researchers with an invaluable tool to study the feeding ecology of oceanic top predators.


Connaître en détails la composition du régime alimentaire des grands prédateurs marins tels que les orques (Orcinus orca) est primordial afin d'évaluer leurs impacts sur les écosystèmes. Pourtant, à quelques exceptions près, l'écologie alimentaire de ces super-prédateurs reste mal comprise. Ici, nous utilisons notre nouvelle approche d'analyse quantitative des signatures d'acides gras (QFASA) sur près de 200 orques et plus de 900 proies potentielles pour modéliser leur régime alimentaire à travers l'Atlantique Nord. Les estimations de leurs régimes alimentaires montrent que les orques consomment principalement d'autres baleines dans l'ouest de l'Atlantique Nord (Arctique canadien, Est du Canada), des phoques dans le milieu de l'Atlantique Nord (Groenland) et des poissons dans l'est de l'Atlantique Nord (Islande, îles Féroé, Norvège). Néanmoins, ces estimations varient considérablement d'un individu à l'autre dans la plupart des régions. Cette variation alimentaire importante entre les individus doit être prise en compte dans les futures études écologiques qui s'intéressent aux orques de l'Atlantique Nord et d'ailleurs. Ces estimations révèlent des variations remarquables dans l'écologie trophique des orques tant au niveau des population que de l'individu, ce qui peut aider à évaluer l'impact de leur prédation sur la dynamique des communautés et des écosystèmes dans un contexte de changements climatiques en l'Atlantique Nord. Cette nouvelle approche fournit aux chercheurs un outil inestimable pour étudier l'écologie alimentaire des super-prédateurs océaniques.


Assuntos
Focas Verdadeiras , Orca , Animais , Ecossistema , Ácidos Graxos , Canadá , Dieta/veterinária
4.
Sci Rep ; 12(1): 6412, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440734

RESUMO

Following the sudden appearance, and subsequent efforts to support the survival of a beluga whale (Delphinapterus leucas) speculated to have been previously trained off the coast of Norway, we investigate the animal's ability to readapt to life in the wild. Dietary DNA (dDNA) analysis was used to assess diet throughout this rehabilitation process, and during a return to unassisted foraging and self-feeding. Metabarcoding of feces collected throughout this process, confirmed the diversification of the beluga whale's diet to local prey. These findings are indicative of improved foraging behavior, and the ability of this individual to resume wild foraging following a period of dependency in managed care. New insight of digestion rates, and the time window during which prey detection through dDNA analysis is appropriate was also obtained. Beyond the case study presented here, we demonstrate the power of dDNA analysis as a non-intrusive tool to assess the diet of large mammals and track progress adapting to life in the wild following release from captivity and rehabilitation programs.


Assuntos
Beluga , Animais , DNA , Fezes , Noruega
5.
Ecol Evol ; 11(23): 17289-17306, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34938508

RESUMO

This study investigates survival and abundance of killer whales (Orcinus orca) in Norway in 1988-2019 using capture-recapture models of photo-identification data. We merged two datasets collected in a restricted fjord system in 1988-2008 (Period 1) with a third, collected after their preferred herring prey shifted its wintering grounds to more exposed coastal waters in 2012-2019 (Period 2), and investigated any differences between these two periods. The resulting dataset, spanning 32 years, comprised 3284 captures of 1236 whales, including 148 individuals seen in both periods. The best-supported models of survival included the effects of sex and time period, and the presence of transients (whales seen only once). Period 2 had a much larger percentage of transients compared to Period 1 (mean = 30% vs. 5%) and the identification of two groups of whales with different residency patterns revealed heterogeneity in recapture probabilities. This caused estimates of survival rates to be biased downward (females: 0.955 ± 0.027 SE, males: 0.864 ± 0.038 SE) compared to Period 1 (females: 0.998 ± 0.002 SE, males: 0.985 ± 0.009 SE). Accounting for this heterogeneity resulted in estimates of apparent survival close to unity for regularly seen whales in Period 2. A robust design model for Period 2 further supported random temporary emigration at an estimated annual probability of 0.148 (± 0.095 SE). This same model estimated a peak in annual abundance in 2015 at 1061 individuals (95% CI 999-1127), compared to a maximum of 731 (95% CI 505-1059) previously estimated in Period 1, and dropped to 513 (95% CI 488-540) in 2018. Our results indicate variations in the proportion of killer whales present of an undefined population (or populations) in a larger geographical region. Killer whales have adjusted their distribution to shifts in key prey resources, indicating potential to adapt to rapidly changing marine ecosystems.

6.
Commun Biol ; 4(1): 642, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-34059764

RESUMO

The development of a precise blood or skin tissue DNA Epigenetic Aging Clock for Odontocete (OEAC) would solve current age estimation inaccuracies for wild odontocetes. Therefore, we determined genome-wide DNA methylation profiles using a custom array (HorvathMammalMethyl40) across skin and blood samples (n = 446) from known age animals representing nine odontocete species within 4 phylogenetic families to identify age associated CG dinucleotides (CpGs). The top CpGs were used to create a cross-validated OEAC clock which was highly correlated for individuals (r = 0.94) and for unique species (median r = 0.93). Finally, we applied the OEAC for estimating the age and sex of 22 wild Norwegian killer whales. DNA methylation patterns of age associated CpGs are highly conserved across odontocetes. These similarities allowed us to develop an odontocete epigenetic aging clock (OEAC) which can be used for species conservation efforts by provide a mechanism for estimating the age of free ranging odontocetes from either blood or skin samples.


Assuntos
Envelhecimento/genética , Golfinhos/metabolismo , Baleias/metabolismo , Fatores Etários , Envelhecimento/fisiologia , Animais , DNA/genética , Metilação de DNA/genética , Golfinhos/genética , Epigênese Genética/genética , Epigenômica/métodos , Genoma , Filogenia , Baleias/genética
7.
Environ Toxicol Chem ; 40(7): 1850-1860, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34008231

RESUMO

Little is known of the movement or presence of unregulated, emerging contaminants in top predators. The aim of the present study was to conduct the first screening of legacy and emerging contaminants in multiple tissues of killer whales (Orcinus orca) from Norway and investigate tissue partitioning and maternal transfer. Blubber was collected from 8 killer whales in 2015 to 2017, in addition to muscle from 5 of the individuals, and kidney, liver, heart, and spleen from a neonate. We screened for 4 unregulated brominated flame retardants and found pentabromotoluene (PBT) and hexabromobenzene (HBB) at low levels in the blubber of all individuals (median PBT 0.091 ng/g lipid wt, median HBB 1.4 ng/g lipid wt). Levels of PBT and HBB (wet wt) were twice as high in the blubber than the muscle for each individual, confirming preferential accumulation in lipid-rich tissues. Perfluoroalkyl substances and total mercury levels were lower in the neonate than adults, suggesting less efficient maternal transfer of these substances. Polychlorinated biphenyl levels in blubber exceeded the threshold for onset of physiological effects (9 µg/g lipid wt) in 7 of the 8 whales, including the neonate. The presence of PBT and HBB in the neonate is the first evidence of maternal transfer of these unregulated contaminants in marine mammals. Our results are relevant for the continued environmental monitoring of contaminants in the Arctic. Environ Toxicol Chem 2021;40:1850-1860. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Retardadores de Chama , Bifenilos Policlorados , Orca , Animais , Regiões Árticas , Monitoramento Ambiental , Retardadores de Chama/análise , Bifenilos Policlorados/análise
8.
Sci Rep ; 10(1): 11888, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32681067

RESUMO

Killer whales (Orcinus orca) are at risk from high levels of biomagnifying pollutants, such as polychlorinated biphenyls (PCBs) and mercury (Hg). Previous toxicological risk assessments for the Norwegian killer whale population have assumed fish as the primary prey source, and assessed the population as below established effect thresholds. However, some individuals have recently been identified to also feed on seals. This study is the first to quantify levels of pollutants in seal-eating killer whales from northern Norway, and to measure Hg levels in the skin of killer whales worldwide. We found higher levels of all pollutants in seal-eating than fish-eating killer whales, including the emerging brominated flame retardants pentabromoethylbenzene (PBEB), pentabromotoluene (PBT) and hexabromobenzene (HBB). Sum polychlorinated biphenyls (ΣPCBs) in the blubber of seal-eaters (n = 7, geometric mean = 46 µg/g l.w.) were four times higher than fish-eaters (n = 24, geometric mean = 11 µg/g l.w.), which pushed all seal-eating individuals above multiple thresholds for health effects. Total Hg levels in skin of seal-eaters (n = 10, arithmetic mean = 3.7 µg/g d.w.) were twice as high as in fish-eaters (n = 28, arithmetic mean = 1.8 µg/g d.w.). Our results indicate that by feeding on higher trophic prey, the Norwegian killer whale population is at higher risk of health effects from pollution than previously assumed.


Assuntos
Monitoramento Ambiental , Comportamento Predatório , Focas Verdadeiras , Poluição da Água , Orca , Fatores Etários , Animais , Cadeia Alimentar , Metais Pesados , Noruega , Fatores Sexuais , Poluentes Químicos da Água
9.
Ecol Evol ; 10(9): 4115-4127, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32489635

RESUMO

Ecological diversity has been reported for killer whales (Orcinus orca) throughout the North Atlantic but patterns of prey specialization have remained poorly understood. We quantify interindividual dietary variations in killer whales (n = 38) sampled throughout the year in 2017-2018 in northern Norway using stable isotopic nitrogen (δ15N: 15N/14N) and carbon (δ13C: 13C/12C) ratios. A Gaussian mixture model assigned sampled individuals to three differentiated clusters, characterized by disparate nonoverlapping isotopic niches, that were consistent with predatory field observations: seal-eaters, herring-eaters, and lumpfish-eaters. Seal-eaters showed higher δ15N values (mean ± SD: 12.6 ± 0.3‰, range = 12.3-13.2‰, n = 10) compared to herring-eaters (mean ± SD: 11.7 ± 0.2‰, range = 11.4-11.9‰, n = 19) and lumpfish-eaters (mean ± SD: 11.6 ± 0.2‰, range = 11.3-11.9, n = 9). Elevated δ15N values for seal-eaters, regardless of sampling season, confirmed feeding at high trophic levels throughout the year. However, a wide isotopic niche and low measured δ15N values in the seal-eaters, compared to that of whales that would eat solely seals (δN-measured = 12.6 vs. δN-expected = 15.5), indicated a diverse diet that includes both fish and mammal prey. A narrow niche for killer whales sampled at herring and lumpfish seasonal grounds supported seasonal prey specialization reflective of local peaks in prey abundance for the two fish-eating groups. Our results, thus, show differences in prey specialization within this killer whale population in Norway and that the episodic observations of killer whales feeding on prey other than fish are a consistent behavior, as reflected in different isotopic niches between seal and fish-eating individuals.

10.
PLoS One ; 12(6): e0180099, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28666015

RESUMO

Killer whales (Orcinus orca) have been documented preying on either fish or marine mammals in several regions, suggesting that this odontocete species has the ability to specialize on different types of prey. Off Norway, killer whales have been shown to rely on the Atlantic herring (Clupea harengus) as a main prey resource. Infrequent observations have revealed seals as an additional component of their diet, yet the extent of predation on marine mammals has remained largely unknown. Here, we present the findings of 29 years of photographic and observational data on seal-feeding killer whale groups identified in Norwegian coastal waters. Four groups have been observed preying and feeding on seals over several years, taking both harbor (Phoca vitulina) and grey (Halichoerus grypus) seals. These stable groups are shown to adopt small group sizes, were typically observed in near-shore areas and were not encountered on herring wintering grounds. Behavioral and social traits adopted by these groups are similar to those of pinniped-feeding killer whales from other regions. The potential ecological reasons and the extent of such prey specializations are discussed.


Assuntos
Phoca , Comportamento Predatório , Focas Verdadeiras , Orca/fisiologia , Animais , Estudos Longitudinais , Noruega
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...